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Introduction

Diffraction of a wave passing through a slot is a fundamental problem that has applica-
tions in many situations. A problem of current interest is the propagation of waves through
obstacles such as buildings in an urban environment, where an entrance aperture could be
approximated as a slot. Solutions for the diffracted fields of a slot have been obtained by
exact eigenfunction expansions as well as various approximate and numerical methods. The
eigenfunction solution, in terms of Mathieu functions, has been published by Stamnes and
Eide [1] for a slot with several types of converging incident waves. Results of the eigenfunc-
tion solution are presented in [2] for slots up to 20 wavelengths in width and compared with
Kirchhoff and Debye approximations.

We have attempted to duplicate the eigenfunction series results in [2]. Little information
is given in [2] about the numerical issues in the evaluation. We encountered a number of
problems in the evaluation of the Mathieu functions for wide slots that required modifications
of the Mathieu function evaluation methods described in [3]. Results were obtained matching
those for the largest slot of 20λ in [2] and also for slots up to 40λ width. The evaluation
of the eigenfunction solution was checked against a 2D moment method solution and was in
close agreement up to a slot width of 40λ.

The eigenfunction solution published by Stamnes and Eide is summarized below, fol-
lowed by a discussion of the Mathieu function evaluation and problems encountered with
large slot widths. Results are then presented for varying slot width and compared with the
2D moment method solutions. A moment method solution for a diverging wave incident on
the gap between two square cylinders is also presented and compared with the fields in a
slot representing the front aperture.

Eigenfunction solution for diffraction by a slot

The solution for diffraction by a slot can be obtained by the separation of variables
solution of the wave equation in elliptical coordinates. Results are presented by Stamnes in
[1] for hard or soft screens and for an incident plane wave, converging cylindrical wave and
converging dipole wave. The result for a hard screen, where the potential uh,q represents the
magnetic field parallel to the slot, will be considered here and is

uh,q =
∞∑

m=0

Bem(s)Ceq
m(s)He

(1)
m (s, u)Sem(s, v) (1)

where u and v are the radial and angular elliptical coordinates, s = (kD/2)2 for slot width
D and q = c for a converging cylindrical wave or q = d for a converging dipole wave. The

* This work was performed under the auspices of the U. S. Department of Energy by the University of
California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.
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coefficients Be are

Bem(s) = (8π)1/2 im

Nem

Jem(s, 0)

He
(1)
m (s, 0)

.

The functions Sem(s, v) are the angular Mathieu functions even in v, while Jem(s, u) are

the radial Mathieu functions analogous to the J Bessel functions and He
(1)
m (s, u) are radial

Mathieu functions corresponding to the cylindrical Hankel functions H
(1)
m . These functions

are discussed in the next section and evaluation methods are given in [3].

The functions Ceq
m(s) are called the integrated Mathieu functions by Stamnes, and

depend on the incident wave. For a converging incident wave focused at a distance z1

behind the screen they are defined as

Ceq
2r+γ(s) =

∞∑
k=0

De
(2r+γ)
2k+γ (s)Leq

2k+γ(kz1)

for γ = 0, 1. Der
k are coefficients in the series solution of Mathieu’s equation and are discussed

in the next section and
Leq

n(w) = 1
2

[
Lq+

n (w) + Lq−
n (w)

]
Ld±

n (w) =
k

2π

∫ π

0
sin t exp[−i(w sin t ∓ nt] dt

Lc±
n (w) =

k

2π

∫ π

0
exp[−i(w sin t ∓ nt] dt.

The integrands for Ld±
n and Lc±

n show rapid oscillation when w is large. A method
for evaluating these integrals is described in [6], where the integration range is divided into
subdomains where the integrand is approximated by functions that can be integrated in
terms of known functions. Rather than use this method we integrated numerically in the
complex plane. For n ≤ w the integrand for Ld±

n has a saddle point on the real axis at
ts = cos−1(±n/w) with the path of steepest descent and minimum phase change passing
through at an angle π/4 in the complex plane. It can be integrated relatively easily by
integrating from t = 0 to −its, then to t = π + i(π − ts) and then to π. The integrals away
from the real axis can be terminated if the integrand decays to a sufficiently small value.
The NIntegrate function was used in Mathematica and an adaptive Romberg quadrature
routine in Fortran.

The coefficients Nem are defined as

Ne2r = 2π(De2r
0 )2 + π

∞∑
k=1

(De2r
2k)

2 =

∫ 2π

0
[Se2r(s, v)]2 dv (2a)

Ne2r+1 = π
∞∑

k=0

(De
(2r+1)
2k+1 )2 =

∫ 2π

0
[Se2r+1(s, v)]2 dv. (2b)

The elliptical coordinates u and v, radial and angular respectively, are related to rect-
angular coordinates as

x = a cosh u cos v z = a sinh u sin v
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where a is the half-width of the slot. Solving for u and v yields

v = cos−1

⎡
⎢⎣ x

√
2(

a2 + x2 + y2 +
√

4(ay)2 + (x2 + y2 − a2)2
)1/2

⎤
⎥⎦

u = cosh−1

[
1

a
√

2

(
a2 + x2 + y2 +

√
4(ay)2 + (x2 + y2 − a2)2

)1/2
]

.

Evaluation of the Mathieu Functions

The Mathieu functions needed in the solution for diffraction by a slot are less commonly
available than other functions such as Bessel functions. Methods of evaluation and tabulated
values have been published by G. Blanch and others [4, 5]. Mathieu functions are solutions
of the Mathieu differential equations

d2f(v)

dv2
− (c − 1

2s cos 2v)f(v) = 0 (3a)

d2g(u)

du2
− (c − 1

2s cosh 2u)g(u) = 0 (3b)

where u and v are the radial and angular elliptical coordinates and c and s are separation
constants in the solution of the wave equation. Certain “characteristic values” of c make the
solution periodic in v as required. The characteristic values can be evaluated from continued
fraction expansions and coefficients in the series solutions for f(v) are related by recursion
relations [4]. Stamnes [3] has demonstrated a more direct procedure for these evaluations by
writing the recursion relations in matrix form. The characteristic values are then eigenvalues
of the matrices and the series coefficients are the eigenvectors.

It is convenient to separate the solutions into those even and odd in v and also separate
those into solutions periodic in π or 2π. The basic angular solutions for Eq. 3a are then

Se2r(s, v) =
∞∑

k=0

De
(2r)
2k (s) cos 2kv (4a)

Se2r+1(s, v) =
∞∑

k=0

De
(2r+1)
2k+1 (s) cos(2k + 1)v (4b)

So2r(s, v) =
∞∑

k=1

Do
(2r)
2k (s) sin 2kv (4c)

So2r+1(s, v) =
∞∑

k=0

Do
(2r+1)
2k+1 (s) sin(2k + 1)v (4d)

where the coefficients Der
k and Dor

k for even and odd functions, respectively, are associated
with the characteristic value number r. They are obtained from the recursion relations or
as eigenvectors of the corresponding matrices. In Stamnes’ papers [1] the coefficients are
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normalized so that the even functions have unit value at v = 0 and the odd functions have
derivatives of unity at v = 0. The normalized coefficients must then satisfy

∞∑
k=0

De
(r)
2k =

∞∑
k=0

De
(r)
2k+1 = 1 (5a)

∞∑
k=1

2kDo
(r)
2k =

∞∑
k=0

(2k + 1)Do
(r)
2k+1 = 1. (5b)

The radial solutions for Eq. 3b can be obtained by making the substitution v → iu in
Eq. 4. However, the series would diverge except for small values of u. Alternate forms for
the radial solutions have been obtained as sums of Bessel functions Jn. The radial Mathieu
function analogous to the J Bessel functions can be evaluated as

Je2r+γ(s, u) = (−1)r
(π

2

)1/2 ∞∑
k=0

(−1)kDe
(2r+γ)
2k+γ J2k+γ(

√
s cosh u) (6a)

Jo2r+γ(s, u) = (−1)r
(π

2

)1/2
tanh u

∞∑
k=0

(−1)k(2k + γ)Do
(2r+γ)
2k+γ J2k+γ(

√
s cosh u). (6b)

for γ = 0, 1. An alternate form for the same solutions can be evaluated as sums of products
of Bessel functions as

Je2r(s, u) =(−1)r
(π

2

)1/2 1

De0

∞∑
k=0

(−1)kDe
(2r)
2k Jk(α)Jk(β) (7a)

Je2r+1(s, u) =(−1)r
(π

2

)1/2 1

De1

∞∑
k=0

(−1)kDe
(2r+1)
2k+1

× [Jk+1(α)Jk(β) + Jk(α)Jk+1(β)] (7b)

Jo2r(s, u) =(−1)r
(π

2

)1/2 1

Do2

∞∑
k=1

(−1)kDo
(2r)
2k

× [Jk+1(α)Jk−1(β) − Jk−1(α)Jk+1(β)] (7c)

Jo2r+1(s, u) =(−1)r
(π

2

)1/2 1

Do1

∞∑
k=0

(−1)kDo
(2r+1)
2k+1

× [Jk+1(α)Jk(β) − Jk(α)Jk+1(β)] (7d)

where
α = 1

2

√
s exp(u), β = 1

2

√
s exp(−u).

An independent set of radial solutions, analogous to the cylindrical Neumann functions
Yn, can be obtained by replacing the Bessel functions Jk(α) by Yk(α) in Eq. 7 to obtain

Ne2r(s, u) =(−1)r
(π

2

)1/2 1

De0

∞∑
k=0

(−1)kDe
(2r)
2k Yk(α)Jk(β) (8a)
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Ne2r+1(s, u) =(−1)r
(π

2

)1/2 1

De1

∞∑
k=0

(−1)kDe
(2r+1)
2k+1

× [Yk+1(α)Jk(β) + Yk(α)Jk+1(β)] (8b)

No2r(s, u) =(−1)r
(π

2

)1/2 1

Do2

∞∑
k=1

(−1)kDo
(2r)
2k

× [Yk+1(α)Jk−1(β) − Yk−1(α)Jk+1(β)] (8c)

No2r+1(s, u) =(−1)r
(π

2

)1/2 1

Do1

∞∑
k=0

(−1)kDo
(2r+1)
2k+1

× [Yk+1(α)Jk(β) − Yk(α)Jk+1(β)] . (8d)

Replacing J by Y in Eq. 6 yields a solution to Eq. 3b, but it is not the same as Eq. 8. Radial
Mathieu functions analogous to the cylindrical Hankel functions are defined as

He
(1)
r (s, u) = Jer(s, u) + iNer(s, u)

He
(2)
r (s, u) = Jer(s, u) − iNer(s, u).

For the slot diffraction problem, the parameter s is related to the slot width D as
s = (ka)2 where a = D/2. For large slots s can be very large, causing problems in the
function evaluations. Published tables of Mathieu functions, as in [4, 5], typically include
s up to 100, while for a slot width of 20λ, s = 3948. With increasing s the coefficients

De
(r)
k and Do

(r)
k oscillate positive and negative with increasing cancellation for k > r, so

the normalization required in Eq. 5 can become difficult or impossible to obtain. When the
normalization of Eq. 5 is possible the largest values of the normalized coefficients for r = 0
increase approximately as

max |De
(0)
k | ≈ exp(−1.4 + 0.96

√
s). (9)

For s = 1400 the maximum normalized coefficients are on the order of 1015, so summing to

1.0 is at or beyond the limits of double precision arithmetic. Coefficients De
(2r)
2k for s = 4000

normalized to sum to unity at the default precision of Mathematica are plotted in Fig. 1
for several values of r. The De0

2k coefficients have a peak value of 1.5(1015), while Eq. 9
would predict a peak for the correctly normalized coefficients of around 1025. For s = 4000
normalization appears to become possible for approximately r = 10 and above.

Other normalizations are sometimes applied to the functions, such as making Ne2r and
Ne2r+1 in Eq. 2 equal to 1/π, which is used in [5]. However, this may shift the problems to
other stages of the evaluation. It is noted in [4], which uses the normalization of Eq. 5, that
coefficients had been obtained for s = 6400 but the result yields merely 0 for v ≤ 55◦, and it
is stated ([4] page xxviii) that if another normalization were used which could be determined
more easily, the results would still be unsatisfactory. However, while it may be unsatisfying
mathematically that the function cannot be evaluated over its entire domain, the result may
still be usable for the slot diffraction problem. When the values are significant the terms
add constructively, and normalization errors may be reduced in some cases by cancellation
in Eq. 1.
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Asymptotic approximations for the angular functions Ser(s, v) for large s are given in
[4], but they fail near v = π/2. An alternative Taylor series is given in [4] for v near π/2.
However, piecing these approximations together over the range of parameters needed for the
slot does not look promising. A comparison of the series and asymptotic evaluations for
s = 1000 with r = 2 and 6 is shown in Fig. 2. The region of failure for the asymptotic form
expands rapidly about π/2 with increasing r. The asymptotic form does go accurately to
1.0 at v = 0 though, so it might be useful for getting an accurate normalization of the series
coefficients by matching values. From a comparison of the series and asymptotic forms for
Se it appears that the function can be evaluated accurately from the series for large values
of s except for the failure of the normalization for s larger than about 1400.

The evaluation of the radial functions also runs into problems with large s when the se-
ries in Eq. 1 must be summed to a higher number of terms for convergence. The coefficients
Der

k decay rapidly for k much less or greater than r, as seen in Fig. 1. With both the Math-
ematica and double precision LAPACK eigenvector routines the coefficients underflowed to
zero when they became less than about 10−22 of the peak value in the eigenvector. This un-
derflow prevents the use of Eq. 7 series, since the terms are normalized by the first coefficient
which could become zero. It was found that accurate values of these small coefficients can
be obtained by using forward and backward recursion in the direction of increasing values.
The lower and upper sections of the vector Der

k from recursion for each value of r were then
normalized to match at k = r and they were then normalized as well as possible over all k
to satisfy Eq. 5. Thus the characteristic values were obtained from the eigenvalue solution,
but the coefficients were obtained by recursion.

Another problem was in the choice of using Eq. 6 or 7 for Je. Some references state that
the product form of Eq. 7 converges faster than 6, although it involves more Bessel function
evaluations. Stamnes [3] suggests using Eq. 6 when u > 5 − 0.043s and Eq. 7 otherwise.
However, it was found that the sums in Eq. 7 could not converge for larger values of r. A
typical result is shown in Fig. 3, where the summation of Eq. 7 for Je2r(s, u) diverges for r
greater than 15 with s = 400. The asymptotic approximation of Je2r(s, u) for large s from
[4] is also shown in Fig. 3 and is seen to fail as soon as the function starts to decay with
increasing r. This limitation of the asymptotic approximation was also seen with s as large
as 4000.

The reason for the divergence of Eq. 7 can be seen in Fig. 4, where the partial sums in

Eq. 6a and 7a from 0 to n are plotted versus n. Note that the coefficients De
(2r)
2k in Eq. 7a

are renormalized by the first coefficient De
(2r)
0 . As can be seen in Fig. 1, for larger values

of r the De
(2r)
0 coefficient may be much smaller than the unity normalization established

by Eq. 5. The Bessel function terms in both equations are of a similar order of magnitude
and decay with increasing order for fixed argument. Hence the terms in Eq. 7 may start out
much larger and have to converge to the same value as Eq. 6. In Fig. 4 it is seen that the
convergence for Je2r(s, u) is successful for r = 1 and 8. For r = 10, Eq. 7 fails to converge
by about a factor of 14, while for r = 25 it has the hopeless task of converging over 50 orders
of magnitude. The odd ordered functions behave in a similar way.

Combining even and odd orders, the summations in Eq. 7 for Jer(s, u) were found to fail
for r larger than about 13 + 0.7

√
s for u = 0 and for r > 15 + 1.1

√
s for u = 0.88. The sum
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in Eq. 6 was also found to fail for r < 18 with s = 4000. Hence we used Jer(s, u) from Eq. 6
for r > 6 + 0.7

√
s and Eq. 7 for smaller r. Generalized forms of Eq. 7 with normalization to

any coefficient Der
s are given in [5] and may also offer a solution to this problem.

With the use of recursion rather than the eigenvectors and appropriate choice of Eq. 6 or
7 it appears that the Mathieu functions can be evaluated accurately except for the failure of
normalization for s greater than about 1400. So how does the normalization error effect the
evaluation of Eq. 1? The terms in the summation in Eq. 1 fall off slowly for m up to about
0.6

√
s and then decrease exponentially. This break point is just before the switch from Eq. 7

to Eq. 6 for Je. Hence most of the contribution to the sum comes from terms with Jer(s, u)
from Eq. 7 with the normalization error canceled by the division by the first coefficient. The
Ner(s, u) functions are also free of the normalization error. The normalization error then
shows up squared in Nem in the denominator of Bem(s) and in Ceq

m(s) and Sem(s, v) in
Eq. 1, so it should cancel out.

Results for Diffraction by a Slot

Stamnes in [2] presents results for diffraction of a converging dipole wave focused behind
slots of varying width. The geometry of the problem is shown in Fig. 5, where the wave is
focused at z1 with incident field normalized to 1.0 at the center of the slot. The dipole wave
is the derivative with respect to z of a converging cylindrical wave. We have attempted
to reproduce these results using Stamnes’ solution with modifications to the evaluation as
described in the previous section.

The results of the Mathieu function solution were compared with a 2D moment method
solution. The moment method code was written for a strip with E parallel to the infinite
strip axis, so that only current parallel to the slot and the resulting vector potential needs
to be considered. After application of Babinets principle, this solution yields the result for
H parallel to the slot. So, while Stamnes presented results for both E and H parallel to the
slot, only the Hy polarization is considered here. The slot width was divided into about 50
sections per wavelength for the moment method solution, although fewer sections by at least
a factor of two probably would give accurate results.

Results for a slot width D of 5λ with focus at z1 = 2.5λ are shown in Fig. 6 and 7.
The contour and density plots in Fig. 6 were produced with the 2D moment method code,
since that code written in Fortran was much faster than the Mathieu function evaluation
in Mathematica. The contour plot appears to match that of Fig. 11b in [2]. Plots of Hy

along the z axis and versus x at several z values are shown in Fig. 7. The Mathieu function
and moment method solutions are seen to be in close agreement and match the plots in
Fig. 11c through h in [2]. The Mathieu function evaluation used coefficient matrices of order
32, so the total number of characteristic values for 2r and 2r + 1 values was 64. Results in
Fig. 8 and 9 for a slot width of 10λ with the focus at z1 = 10λ also show close agreement
between the Mathieu function solution and moment method and match the plots in Fig. 7
in [2]. A similar set of plots are shown in Fig. 10 and 11 for a slot width of 20λ and focus at
z1 = 10λ. For this slot width the Mathieu function evaluation summing over 64 characteristic
values diverged for small values of z and was also inaccurate for x out of the main beam.
Summing 128 characteristic values gave accurate agreement with the moment method and
with Stamnes’ plots in Fig. 3 of [2]. Results for a slot width of 40λ and z1 = 20λ are shown in
Fig. 12 and 13 with good agreement between Mathieu function and moment method results.

7



Summing 128 terms was not accurate for the 40λ width, so we used 256 terms.

To model the propagation of a wave between obstacles such as buildings the Mathieu
function solution for diffraction by a slot could be used to approximate the field in an entrance
aperture and then be coupled with a waveguide model for propagation between the obstacles.
The moment method code can provide a check on this approach by modeling the buildings
as 2D cylinders as long as the dimensions are not too large. The moment method solution
for propagation between two 10λ square cylinders with a 5λ gap is shown in Fig. 14a and is
compared with result for only the front walls forming a slot. The surfaces were divided into
about 20 strips per wavelength for the solution. The source in this case is a line current in
front of the cylinders at z = −5λ and the electric field Ey is shown since Babinet’s principle
was not applied. The slot in Fig. 14b was formed between two 10λ wide conducting screens.
Some error fields can be seen inside the 10λ cylinders, since they make good resonators. The
fields in the front aperture between the cylinders and in the slot are compared in Fig. 15 and
are seen to be close enough so that the slot solution could probably be used to approximate
the excitation of waveguide modes between the buildings.

Conclusion

The diffraction of a wave passing through a slot has been evaluated from the exact
solution in terms of Mathieu functions published by Stamnes [1]. The results agree well
with published results in [2] and are in close agreement with a 2D moment method solution.
The difficulty in evaluating the Mathieu function solution for large slots is in accurately
evaluating the Mathieu functions for large values of the parameter s. We used the eigen-
value method published by Stamnes to get the characteristic values, but to avoid premature
underflow we used forward and backward recursion rather than the eigenvectors to get the
series coefficients for the Mathieu functions. A problem in the Mathieu function evaluation
was the normalization for unit value of the angular functions at zero argument. Alternate
normalizations, such as the sum of the squares of the coefficients, might avoid this problem,
but also might shift it to another stage of the evaluation. The normalization error was found
to nearly cancel out with an appropriate choice of the radial function evaluation.

The Mathieu function solution was evaluated for slot widths up to 40λ with good agree-
ment with a 2D moment method solution. It was found that for accuracy sufficient to avoid
a perceptible difference of curves on a plot the number of Mathieu functions summed (char-
acteristic values) should be at least four times the slot width in wavelengths. We were unable
to get accurate results for a slot width of 60λ.

Evaluation of the Mathieu function solution was fairly slow in Mathematica, taking
about 20 seconds for each field evaluation with 128 characteristic values. Most of this time is
spent in evaluating Bessel functions for the series evaluation of the radial Mathieu functions.
Mathematica’s built in Bessel function routines were used, which are evaluated for each
order and argument, and the same Bessel functions were evaluated repeatedly for each order
of the Mathieu functions. The efficiency of the code could be greatly improved by using
recursion to get the Bessel functions for all needed orders in one evaluation and by saving
the values for each different Mathieu function order. At the end of this work a Fortran code
was completed using recursion for the Bessel functions and it takes about 0.004 seconds for
a field evaluation with 128 characteristic values of the Mathieu functions.
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lo
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e 2
k(
2r
) |

k

r = 6
2
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r = 0
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Fig. 1. Coefficients De
(2r)
2k for s = 4000. Green points represent positive values and red points are negative.
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r=6

v

Se
r(v
)

asymptotic
series

Se
r(v
)

v

r=2

lo
g 1
0[
|Je
2r
(0
)|]

r

Series, Eq. (6).
Series, Eq. (7)
Asymptotic

Je
2r
(0
)

r

Series, Eq. (6).
Series, Eq. (7)
Asymptotic

Fig. 2. Angular Mathieu function Ser(s, v) from series and asymptotic forms for r = 2 and 6 with s = 1000.
The asymptotic approximation fails near v = π/2 over a region that expands with increasing r.

Fig. 3. Radial Mathieu functions Je2r(s, u) for s = 400 comparing series and asymptotic form for large s.
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lo
g 1
0|S
n|

n

r = 1

rel. error = 1.5(10-13)

Eq. (6a)

Eq. (7a)

lo
g 1
0|S

n|

n

r = 8

rel. error = 9.5(10-5)

Eq. (7a)

Eq. (6a)

r = 10

lo
g 1
0|S

n|

n

Eq. (7a)

Eq. (6a)

r = 25

lo
g 1
0|S

n|

n

Eq. (7a)

Eq. (6a)

Fig. 4. Partial sums Sn from 0 to n in the evaluation of Je2r(s, 0) for s = 40, comparing the convergence
of Eq. (6a) and Eq. (7a).
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Fig. 5. Converging wave focused at z1 behind a screen with slot width D.

Fig. 6. Contour and density plots of the Hy field behind the slot of width D = 5λ for a converging dipole
wave with Hy polarization focused at z1 = 2.5λ. The results are from a 2D moment method solution.
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Fig. 7. Field plots for a converging dipole wave with Hy polarization focused at z1 = 5λ behind a slot with
width D = 2.5λ.
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Fig. 8. Contour and density plots of the Hy field behind the slot of width D = 10λ for a converging dipole
wave with Hy polarization focused at z1 = 10λ. The results are from a 2D moment method solution.
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Fig. 9. Field plots for a converging dipole wave with Hy polarization focused at z1 = 10λ behind a slot
with width D = 10λ.
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Fig. 10. Contour and density plots of the Hy field behind the slot of width D = 20λ for a converging dipole
wave with Hy polarization focused at z1 = 10λ. The results are from a 2D moment method solution.
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Fig. 11. Field plots for a converging dipole wave with Hy polarization focused at z1 = 10λ behind a slot
with width D = 20λ.
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Fig. 12. Contour and density plots of the Hy field behind the slot of width D = 40λ for a converging dipole
wave with Hy polarization focused at z1 = 20λ. The results are from a 2D moment method solution.
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Fig. 13. Field plots for a converging dipole wave with Hy polarization focused at z1 = 20λ behind a slot
with width D = 40λ.
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Fig. 14. Electric field Ey due to an electric current line source at z = −5λ; a) 10λ by 10λ cylinders with
5λ gap, b) screen with 5λ gap.

Fig. 15. Electric field Ey due to an electric current line source at z = −5λ comparing Ey in the entrance
aperture between 10λ by 10λ cylinders with 5λ gap and in a 5λ gap in a thin screen.
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